Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769368

RESUMO

Glioblastoma represents the highest grade of brain tumors. Despite maximal resection surgery associated with radiotherapy and concomitant followed by adjuvant chemotherapy with temozolomide (TMZ), patients have a very poor prognosis due to the rapid recurrence and the acquisition of resistance to TMZ. Here, initially considering that TMZ is a prodrug whose activation is pH-dependent, we explored the contribution of glioblastoma cell metabolism to TMZ resistance. Using isogenic TMZ-sensitive and TMZ-resistant human glioblastoma cells, we report that the expression of O6-methylguanine DNA methyltransferase (MGMT), which is known to repair TMZ-induced DNA methylation, does not primarily account for TMZ resistance. Rather, fitter mitochondria in TMZ-resistant glioblastoma cells are a direct cause of chemoresistance that can be targeted by inhibiting oxidative phosphorylation and/or autophagy/mitophagy. Unexpectedly, we found that PARP inhibitor olaparib, but not talazoparib, is also a mitochondrial Complex I inhibitor. Hence, we propose that the anticancer activities of olaparib in glioblastoma and other cancer types combine DNA repair inhibition and impairment of cancer cell respiration.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Ftalazinas/farmacologia , Piperazinas/farmacologia , Temozolomida/farmacologia , Antineoplásicos Alquilantes/farmacologia , Apoptose , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células Tumorais Cultivadas
2.
Cell Stress ; 4(6): 114-146, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32548570

RESUMO

The rediscovery and reinterpretation of the Warburg effect in the year 2000 occulted for almost a decade the key functions exerted by mitochondria in cancer cells. Until recent times, the scientific community indeed focused on constitutive glycolysis as a hallmark of cancer cells, which it is not, largely ignoring the contribution of mitochondria to the malignancy of oxidative and glycolytic cancer cells, being Warburgian or merely adapted to hypoxia. In this review, we highlight that mitochondria are not only powerhouses in some cancer cells, but also dynamic regulators of life, death, proliferation, motion and stemness in other types of cancer cells. Similar to the cells that host them, mitochondria are capable to adapt to tumoral conditions, and probably to evolve to 'oncogenic mitochondria' capable of transferring malignant capacities to recipient cells. In the wider quest of metabolic modulators of cancer, treatments have already been identified targeting mitochondria in cancer cells, but the field is still in infancy.

3.
Mol Cancer Res ; 18(9): 1379-1391, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32471883

RESUMO

Ovarian cancer is an aggressive disease that affects about 300,000 patients worldwide, with a yearly death count of about 185,000. Following surgery, treatment involves adjuvant or neoadjuvant administration of taxane with platinum compounds cisplatin or carboplatin, which alkylate DNA through the same chemical intermediates. However, although platinum-based therapy can cure patients in a number of cases, a majority of them discontinues treatment owing to side effects and to the emergence of resistance. In this study, we focused on resistance to cisplatin and investigated whether metabolic changes could be involved. As models, we used matched pairs of cisplatin-sensitive (SKOV-3 and COV-362) and cisplatin-resistant (SKOV-3-R and COV-362-R) human ovarian carcinoma cells that were selected in vitro following exposure to increasing doses of the chemotherapy. Metabolic comparison revealed that resistant cells undergo a shift toward a more oxidative metabolism. The shift goes along with a reorganization of the mitochondrial network, with a generally increased mitochondrial compartment. More functional mitochondria in cisplatin-resistant compared with cisplatin-sensitive cells were associated to enzymatic changes affecting either the electron transport chain (SKOV-3/SKOV-3-R model) or mitochondrial coupling (COV-362/COV-362-R model). Our findings further indicate that the preservation of functional mitochondria in these cells could be due to an increased mitochondrial turnover rate, suggesting mitophagy inhibition as a potential strategy to tackle cisplatin-resistant human ovarian cancer progression. IMPLICATIONS: Besides classical mechanisms related to drug efflux and target modification, we report that preserving functional mitochondria is a strategy used by human ovarian cancer cells to resist to cisplatin chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Carcinoma/tratamento farmacológico , Cisplatino/farmacologia , Metabolismo Energético , Neoplasias Ovarianas/tratamento farmacológico , Transdução de Sinais , Animais , Autofagia , Hidrocarbonetos Aromáticos com Pontes/administração & dosagem , Carcinoma/virologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos Nus , Mitocôndrias/metabolismo , Mitofagia , Neoplasias Ovarianas/virologia , Oxirredução , Taxoides/administração & dosagem
4.
Front Pharmacol ; 11: 263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231567

RESUMO

The clinical management of head and neck squamous cell carcinoma (HNSCC) commonly involves chemoradiotherapy, but recurrences often occur that are associated with radioresistance. Using human SQD9 laryngeal squamous cell carcinoma cancer cells as a model, we aimed to identify metabolic changes associated with acquired radioresistance. In a top-down approach, matched radiosensitive and radioresistant SQD9 cells were generated and metabolically compared, focusing on glycolysis, oxidative phosphorylation (OXPHOS) and ROS production. The cell cycle, clonogenicity, tumor growth in mice and DNA damage-repair were assessed. Mitochondrial DNA (mtDNA) was sequenced. In a bottom-up approach, matched glycolytic and oxidative SQD9 cells were generated using FACS-sorting, and tested for their radiosensitivity/radioresistance. We found that acquired radioresistance is associated with a shift from a glycolytic to a more oxidative metabolism in SQD9 cells. The opposite was also true, as the most oxidative fraction isolated from SQD9 wild-type cells was also more radioresistant than the most glycolytic fraction. However, neither reduced hexokinase expression nor OXPHOS were directly responsible for the radioresistant phenotype. Radiosensitive and radioresistant cells had similar proliferation rates and were equally efficient for ATP production. They were equally sensitive to redox stress and had similar DNA damage repair, but radioresistant cells had an increased number of mitochondria and a higher mtDNA content. Thus, an oxidative switch is associated with but is not responsible for acquired radioresistance in human SQD9 cells. In radioresistant cells, more abundant and fitter mitochondria could help to preserve mitochondrial functions upon irradiation.

5.
Biochim Biophys Acta Bioenerg ; 1858(8): 556-572, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28167100

RESUMO

Altered metabolism in cancer cells is pivotal for tumor growth, most notably by providing energy, reducing equivalents and building blocks while several metabolites exert a signaling function promoting tumor growth and progression. A cancer tissue cannot be simply reduced to a bulk of proliferating cells. Tumors are indeed complex and dynamic structures where single cells can heterogeneously perform various biological activities with different metabolic requirements. Because tumors are composed of different types of cells with metabolic activities affected by different spatial and temporal contexts, it is important to address metabolism taking into account cellular and biological heterogeneity. In this review, we describe this heterogeneity also in metabolic fluxes, thus showing the relative contribution of different metabolic activities to tumor progression according to the cellular context. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.


Assuntos
Metabolismo Energético , Neoplasias/metabolismo , Animais , Morte Celular , Divisão Celular , Glicólise , Humanos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células Estromais/metabolismo
6.
Oncotarget ; 8(15): 24415-24428, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28107190

RESUMO

Cancers develop metabolic strategies to cope with their microenvironment often characterized by hypoxia, limited nutrient bioavailability and exposure to anticancer treatments. Among these strategies, the metabolic symbiosis based on the exchange of lactate between hypoxic/glycolytic cancer cells that convert glucose to lactate and oxidative cancer cells that preferentially use lactate as an oxidative fuel optimizes the bioavailability of glucose to hypoxic cancer cells. This metabolic cooperation has been described in various human cancers and can provide resistance to anti-angiogenic therapies. It depends on the expression and activity of monocarboxylate transporters (MCTs) at the cell membrane. MCT4 is the main facilitator of lactate export by glycolytic cancer cells, and MCT1 is adapted for lactate uptake by oxidative cancer cells. While MCT1 inhibitor AZD3965 is currently tested in phase I clinical trials and other inhibitors of lactate metabolism have been developed for anticancer therapy, predicting and monitoring a response to the inhibition of lactate uptake is still an unmet clinical need. Here, we report the synthesis, evaluation and in vivo validation of (±)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a tracer of lactate for positron emission tomography. [18F]-FLac offers the possibility to monitor MCT1-dependent lactate uptake and inhibition in tumors in vivo.


Assuntos
Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias/metabolismo , Compostos Radiofarmacêuticos/química , Simportadores/metabolismo , Proliferação de Células/fisiologia , Radioisótopos de Flúor/química , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...